Editors
Neil Reid, Articles Section
Department of Geography & Planning
The University of Toledo
Toledo, OH 43606

Jay D. Gatrell, Research Notes & Discussion Section
Department of Geography, Geology, & Anthropology
Indiana State University
Terre Haute, IN 47809

Special Advisor to the Editorial Board
Michael Somers, Director of Libraries
Bridgewater State University

Technical Advisor
Steve Hardin
ISU Cunningham Memorial Library

Editorial Board
S. Bagchi-Sen
SUNY-Buffalo

J. Bodenman
Bloomsburg University of PA

F. Calzonetti
The University of Toledo

Christopher Cusack
Keene State College

A. Glasmeier
Pennsylvania State University

R. Hanham
West Virginia University

J.W. Harrington
University of Washington

Roger Hayter
Simon Fraser

T. Klier
Federal Reserve of Chicago

Dan Knudsen
Indiana University

R. Larson
Indiana State University

K. Oshiro
Wright State University

C. Pavlik
University of Iowa

J. Wheeler
University of Georgia

Mission
The Industrial Geographer (ISSN 1540-1669) publishes articles and research notes that focus on a broad range of economic issues across all economic sectors and explore issues at all scales from the firm to the globe. The journal encourages submissions that are theoretically driven empirical research, papers with an applied and planning thrust, and papers that explore directions for future research. Individuals interested in organizing a special issue should contact the editors or a member of the editorial board.

Publication Information
The Industrial Geographer (ISSN 1540-1669) is published bi-annually in the Fall (September-October) and Spring (April-May). Additionally, special issues may occasionally be published on an irregular basis. The journal is a collaborative effort between the ISU Cunningham Memorial Library and the Department of Geography, Geology, & Anthropology. The *IG* is also affiliated with the Regional Development & Planning Specialty Group of the AAG. The journal is also affiliated with the IGU Commission on the Dynamics of Economic Spaces.

The journal is available free of charge via the internet http://igeographer.lib.indstate.edu or vis-à-vis one of many online content aggregator services. To contact the publishers, write to The Industrial Geographer, 159 Science, GGA, Indiana State University, Terre Haute, IN 47809. (812)237-2256.

© 2003 Indiana State University, Cunningham Memorial Library. All rights reserved. Where specified, individual articles are the property of the authors.
Table of Contents

Industrial Subsidies and the Politics of World Trade: The Case of the Boeing 7e7
D. Pritchard & A. MacPherson
57

The structural dynamics of the pharmaceutical industry:
An analysis of prescription drug costs in the United States & Canadian Markets
K. Douglas & R. Guell
74

Class Notes—Indiana industry: An atlas of selected Indiana Sectors
J. Gatrell et al
80

Volume 1 Manuscript Reviewers
91

Note
92

Guidelines for Contributors
Industrial Subsidies and the Politics of World Trade: The Case of the Boeing 7e7

David Pritchard
Canada-United States Trade Center
Department of Geography
State University of New York
Buffalo, NY 14261

Alan MacPherson
Canada-United States Trade Center
Department of Geography
State University of New York
Buffalo, NY 14261

ABSTRACT
This paper offers a critical commentary on the launch process for a large commercial aircraft (LCA). Using the Boeing 7e7 as an example, we argue that the contemporary launch process bears little resemblance to previous practices. Specifically, the launch process involves both domestic and foreign subsidies because US production is now organized under a 'systems integration' basis. Under systems integration, the lead company (Boeing) spreads risk across a network of suppliers and production partners. Although final assembly takes place inside the US, much of the value-added is shared across the production network (as much as 70 percent). This has clear implications for US trade and employment, in that international subcontracting boosts foreign imports and reduces the need for domestic production workers. From a trade perspective, however, a potentially more troubling feature of the launch process is that major public subsidies are involved. While some of these subsidies are permitted under the World Trade Organization's (WTO) subsidy rules (e.g., certain types of pre-production R&D support), other types of subsidies clearly violate the WTO's regulations (e.g., infrastructure and production subsidies). This paper reviews the types of subsidies that Boeing has sought in the planning process for the 7e7 launch. Our evidence suggests that Boeing’s launch process contravenes existing international agreements on production subsidies. This does not bode well for the US commercial aerospace sector, especially in light of Boeing’s urgent need for a new aircraft program to compete with Airbus.

INTRODUCTION
The commercial aerospace sector is a critical part of the US industrial base in terms of skilled production jobs, applied research, foreign exports, and inter-industry multiplier effects (US International Trade Commission, 2001). With the rise of Airbus, however, the sole remaining US producer of large passenger jets (Boeing) has opted for a ‘systems integration’ mode of production to reduce unit costs, simplify assembly procedures, and speed up the product development process (MacPherson and Pritchard, 2003). Under systems integration, risk and costs are spread across a network of domestic and foreign partners. While the final product is assembled inside the US, major parts of the airframe are subcontracted to foreign suppliers. In the past, international outsourcing was guided in large part by industrial offset agreements that provided guaranteed sales for new aircraft. Today, however, the costs associated with launching a new aircraft in the large commercial aircraft (LCA) category are so high that systems integration
based on cost-minimization makes good financial sense -- at least over the short-run. A disadvantage of systems integration is that outsourcing production also implies 'outsourcing profit' (Hart-Smith, 1998). A further disadvantage is that core technology must be transferred to outside suppliers in order to make the final assembly task feasible (Pritchard, 2001).

From a trade and employment perspective, systems integration on a global basis implies increased US imports and reduced domestic labor demand. If Japan were to make the wings for Boeing’s proposed 7e7 ‘Dreamliner’, then presumably Boeing would not need to retain skilled production workers that currently have expertise in wing milling and fabrication. This said, a potentially more serious concern from a trade perspective is that a new LCA launch by Boeing would likely proceed on the basis of substantial public subsidies (both foreign and domestic). Domestic subsidies could range from state-level incentives to encourage assembly-based investments to indirect national subsidies for the production process. Foreign subsidies might follow precisely the same lines for parts production in offshore locations. This raises the question of whether a new LCA launch by Boeing might contravene the World Trade Organization’s (WTO) rules regarding ‘subsidies and countervailing measures’. A litigation by the WTO would surely alarm potential customers (airlines), as well as add extra complexity to the launch process.

Set against this context, this paper reviews the planning process that has thus far been developed to set the stage for a 7e7 launch. The arguments advanced in our analysis are not dependent upon whether or not Boeing decides to launch this aircraft. Nor does our analysis hinge upon the precise distribution of production or assembly locations inside or outside the United States. Rather, the analysis simply uses the 7e7 as an example of how the launch process could be derailed or delayed by international regulatory conditions (i.e., WTO litigations). Further, it should be stressed that our paper does not purport to make any contributions to current or emerging theories of international business, economic geography, or industrial organization. Instead, our goal is to characterize the launch process for a new LCA in light of a number of fundamental changes that have recently taken place within the US aerospace sector. Prior to an examination of the subsidy issue, however, it is first necessary to supply a research context for the discussion. Why has Boeing opted for a systems integration mode of production? What are the advantages and disadvantages of this type of business model? And, what does systems integration imply for US employment and trade?

SYSTEMS INTEGRATION

Total systems integration can be described as a vertically disintegrated business model where a single firm assembles a final product from components or subsystems manufactured by external suppliers (Yip, 2003). While few industrial corporations have adopted total systems integration as a business strategy, many firms have an approach that comes fairly close. In the US LCA sector, for instance, Boeing has become increasingly dependent upon outside suppliers for technologically complex and/or critical airframe components such as wings, fuselage assemblies, centre wing boxes, and tail sections (Pritchard, 2001). A major goal of this strategy is to reduce unit costs, especially when the non-recurring expenditures associated with component design and development can be transferred to external suppliers. To be successful at this, it is imperative that all components and subsystems interface smoothly so that final assembly can be reduced to the task of slotting or joining various bits and pieces together. Clearly, this requires a substantial amount of design
and engineering coordination across the supply network to ensure problem-free interface between components.

In this regard, Kash and Rycoft (2000) note that the successful commercialization of complex technologies increasingly requires firms to operate within self-organizing networks. Systems integrators build these networks by selecting technologically competent partners that exhibit advanced industrial design capability. The systems integrator can spread commercial risk across the supply chain by sharing revenues on the basis of final sales. The economic logic behind this model is analogous to the principle of international comparative advantage, in that corporate welfare as a whole is deemed to be maximized when each business unit specializes in the production of items that best exploit internal competencies in terms of design, engineering, or manufacturing capability. While Boeing has increasingly adopted this business philosophy to cut launch costs for new aircraft programs, not all of the world’s major aerospace companies have opted for this model. In the case of Rolls Royce jet engines, for example, Prencipe (1997) notes that complex or core technologies remain internally rooted with respect to design, development, and production activity, whereas peripheral or less critical functions are outsourced on a systems integration basis. Significantly, Prencipe (1997) shows that Rolls Royce has retained a total design capability across virtually all of the component fields that have recently been hived-off to outside suppliers. In the case of Airbus, moreover, it is interesting to note that complex or critical airframe components are produced internally (especially for newer aircraft models), and that outsourcing mainly takes place for models that are nearing the end of their life-cycles (Pritchard, 2001).

Whether or not vertical integration (e.g., Airbus) is strategically superior to systems integration (e.g., Boeing) is an issue that goes beyond the scope of this paper. There are, however, several potential drawbacks to systems integration that warrant brief mention. First, systems integration can lead to the hollowing-out of firm-specific technological knowledge and production experience (see Becker and Zirpoli, 2003). If the systems integrator fails to retain in-house competence in key areas of component production (e.g., via shadow engineering), then the firm can lose its ability to master the evolutionary dynamics of the product-system (Prencipe, 1997, 2000). While hollowing-out for financial reasons may serve the interests of shareholders, Prencipe (2000) notes that such a strategy can at the same time lead to a serious loss of important engineering skills, learning economies, and technological independence (see also Tyson, 1992). In a similar vein, Paoli (1995) points out that spinning out component production ultimately entails spinning out cognitive activities, in that the systems integrator must transfer both codified and tacit knowledge to external suppliers. The possibility that risk-sharing partners could eventually become competitors does not appear to figure prominently in the financial calculus of systems integrators (see MacPherson and Pritchard, 2003).

In the case of the 7e7, it should be emphasized that the most innovative segments of the product-system are slated for Japan and Italy (i.e. composite wing and fuselage sections). While the estimated 3-7 days of final work at Boeing’s Everett plant near Seattle (WA) may entail the development of new assembly procedures, the real innovation in the 7e7 program revolves around the development of new composite structures outside the United States.

Another potential problem with systems integration is that the separate minimization of individual costs can prevent the minimization of total costs whenever individual costs interact with other costs. For example, Hart-Smith (1998) shows that
cutting costs on any given set of components can in some cases lead to higher than expected total costs as a result of unforeseen interface difficulties. In short, a business strategy that is driven by the need for unit cost reduction at the component level can lead to a wide range of adverse consequences. In this regard, the unusually high level of systems integration proposed for the 7e7 is something that the LCA sector has never seen before.

TRENDS IN US LCA PRODUCTION
The commercial aircraft industry has been an evolution of technologies for the past fifty years. A new product launch rarely represents a technological breakthrough or geopolitical change, but the proposed 7e7 comes remarkably close. Traditionally, the US commercial airframers would launch comparable models within a few years of each other (e.g., the DC-9 versus the Boeing 737). These models would have similar if not identical manufacturing processes, the same domestic and foreign subcontractors, and similar selling tactics. The US commercial aircraft manufacturers dominated the world with over 90% of global market share in the 1960s for aircraft with over 100 seats. During the past 25 years international subcontracting of subassemblies has become more prevalent with Boeing and the ex-McDonnell Douglas, but the US prime contractors were always in control of the design, manufacturing procedures, and core technologies of 1,000s of first, second and third tier suppliers. An increasingly common practice for Boeing was to boost international cooperation for new LCA launches to secure foreign customers (Eriksson, 1995). While the work content moved away from the US, this industrial offset approach did have advantages for Boeing in reducing capital expenditures for tooling, equipment, and facility infrastructure. However, core technological knowledge always resided within the company. Boeing had the engineering and management experience to develop and control the manufacturing processes for new programs, as well as coordinate a vast supplier base to successfully launch new products.

Today, Boeing is no longer the number one LCA manufacturer in the world. Airbus holds that prestigious position in every measurable category, including new orders, backlogs, deliveries, product technology, and advanced manufacturing procedures. Boeing enjoyed more than a 70% market share after the company purchased McDonnell Douglas in the mid 1990s (Commission of the Future of the US Aerospace Industry, 2002). This share has now fallen below 50%, and the company faces serious problems with aging product lines (i.e., average aircraft design vintages of 28 years).

Table 1 shows that Boeing’s commercial product line has 5 out of the 6 aircraft currently in production with technologies dating back to the 1960s and 1970s (only the 777 has new technologies from the 1990s). The aging Boeing commercial aircraft family has not sold well during the current industry downturn, which has Boeing’s production numbers slashed from 620 aircraft deliveries in 1999 to only 280 in 2003. The backlog numbers for 4 of the 6 aircraft models are dangerously low, which causes alarm for the airlines regarding the longevity of each model in making their future fleet acquisition decisions. The announced closing of the 757 production lines in October 2003 has exasperated this concern.

Boeing has been diversifying away from the commercial side of the aerospace business since the launch of the 777 in the early 1990s (commercial sales dropped below 50% of total revenues in 2002). The company has been moving into defense sectors with purchases of several high-technology firms in the 1990s (e.g. Rockwell). Boeing also has a future vision to become an aviation services provider in fields...
such as engine repair, aircraft maintenance, flight crew training, used airplane remarketing, and airport and route services (see MacPherson and Pritchard, 2003). The probability of the 7e7 actually being launched can be debated by the visible lack of new investment in the commercial product line over the past 8 years, along with the risk averting attitude of the current Boeing Board of Directors (many of whom are averse to investing billions of dollars into a new airplane launch to service a mature market segment that only yields a 2-5% profit margin). This has the industry questioning Boeing's appetite to compete against Airbus, a company with a growing stable of newer aircraft that feature advanced technologies. With the resignation of Boeing's longstanding CEO (Phil Condit) on December 1, 2003, moreover, many Boeing employees fear that the company's new CEO (Harry Stonecipher) will continue to position the firm within high-margin fields outside the commercial aerospace domain (e.g., defense applications, aviation services, telecommunications).

This said, the 7e7 proposed by Boeing will be looking to change or “break” the rules on how a new aircraft is launched by redefining where the work elements will be done, as well as changing the methods of funding not only for product development but also the production process itself (disregarding the company’s traditional methods of assembling). One might consider this as “clean sheet of paper approach” for Boeing, which needs a radically new strategy to compete with Airbus. In several important respects, however, Boeing is disregarding the “rules” of engagement for the commercial aircraft world. One of those rules pertains to the 1992 US/EU Agreement on Trade in Large Civil Aircraft, while the other pertains to the 1994 WTO Agreement on Subsidies and Countervailing Measures.

Table 1. Boeing Airframe Product Life Cycle by Model

<table>
<thead>
<tr>
<th>Model</th>
<th>Year of Introduction</th>
<th>Last Year Ordered</th>
<th>Years in Market</th>
<th>Orders in Backlog 6/30/03</th>
<th>Total Orders @ 6/30/03</th>
<th>% of Orders Cumulative 6/30/03</th>
</tr>
</thead>
<tbody>
<tr>
<td>707*</td>
<td>1955</td>
<td>1990</td>
<td>35</td>
<td>0</td>
<td>1010</td>
<td>0%</td>
</tr>
<tr>
<td>727*</td>
<td>1960</td>
<td>1983</td>
<td>23</td>
<td>0</td>
<td>1831</td>
<td>0%</td>
</tr>
<tr>
<td>737</td>
<td>1965</td>
<td>2003</td>
<td>38</td>
<td>809</td>
<td>5273</td>
<td>15%</td>
</tr>
<tr>
<td>747</td>
<td>1966</td>
<td>2003</td>
<td>37</td>
<td>43</td>
<td>1372</td>
<td>3%</td>
</tr>
<tr>
<td>757</td>
<td>1978</td>
<td>2003</td>
<td>25</td>
<td>18</td>
<td>1049</td>
<td>2%</td>
</tr>
<tr>
<td>767</td>
<td>1978</td>
<td>2003</td>
<td>25</td>
<td>31</td>
<td>939</td>
<td>3%</td>
</tr>
<tr>
<td>777</td>
<td>1990</td>
<td>2003</td>
<td>13</td>
<td>179</td>
<td>622</td>
<td>29%</td>
</tr>
<tr>
<td>DC-8*</td>
<td>1955</td>
<td>1971</td>
<td>16</td>
<td>0</td>
<td>556</td>
<td>0%</td>
</tr>
<tr>
<td>DC-9/MD80/MD90/717</td>
<td>1963</td>
<td>2003</td>
<td>40</td>
<td>36</td>
<td>2438</td>
<td>1%</td>
</tr>
<tr>
<td>DC-10/MD11*</td>
<td>1968</td>
<td>1998</td>
<td>30</td>
<td>0</td>
<td>646</td>
<td>0%</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1116</td>
<td>15736</td>
</tr>
</tbody>
</table>

Average Airframe Product Life

28.20

Average Active Airframe Product Life

29.67
1992 US-EU AGREEMENT ON TRADE IN LARGE CIVIL AIRCRAFT

This agreement clarifies and expands the application of a WTO plurilateral agreement, the Agreement on Trade in Civil Aircraft with passenger aircraft of 100 seats or more (GATT, 1979; U.S. Department of Commerce’s Office of Aerospace, 2003). The agreement is aimed at minimizing the trade-distorting role governments may play in the LCA sector by:

- Article 3 prohibiting government funding for the production of large civil aircraft:

 The agreement benefits companies by prohibiting the parties from providing any government funds for the production of large civil aircraft and limiting government support for the development of new, large civil aircraft programs (US-EU Trade in Large Civil Aircraft, 1992).

- Article 4 establishing limits on the percent of government funds that may be provided for the development of new, large civil aircraft:

 The agreement limits direct government support for the development of new aircraft programs to no more than 33 percent of a new aircraft program’s total development costs. Funds provided to manufacturers must be repaid at rates at least equivalent to the cost of government borrowing (US-EU Trade in Large Civil Aircraft, 1992).

- Article 5 limiting the benefits that manufacturers of large civil aircraft may receive from "indirect" government support, such as from performing government-funded aeronautical research and development:

 The identifiable benefits to manufacturers of large civil aircraft from indirect government support is also limited. Indirect government support includes activities such as government-funded aeronautical research and development, which can reduce a manufacturer’s cost in producing aircraft. The U.S.-EU aircraft agreement stipulates that the identifiable benefits from indirect government support are not to exceed (a) 3 percent of total large civil aircraft industry’s annual turnover, and (b) 4% percent of the annual turnover of any single manufacturer of large civil aircraft (US-EU Trade in Large Civil Aircraft, 1992).

The US-EU aircraft agreement was signed and took effect on July 17, 1992. Either party may withdraw from the agreement, provided notification of its intention to do so is issued one year in advance. If the proposed 7e7 development and production package proceeds according to plan, however, then it seems likely that the U.S. may need to withdraw from the 1992 agreement.

WTO–AGREEMENT ON SUBSIDIES AND COUNTERVAILING MEASURES

The Agreement on Subsidies and Countervailing Measures (SCM Agreement) addresses two separate but related topics: multilateral disciplines regulating the provision of subsidies, and the use of countervailing measures to offset injury caused by subsidized imports. Multilateral disciplines are the rules regarding whether or not a subsidy may be provided by a Member (WTO, 2003A). They are enforced through invocation of the WTO dispute settlement mechanism. Countervailing duties are unilateral instruments which may be applied by a Member after an investigation by that Member and a determination that the criteria set forth in the SCM Agreement are satisfied.

The WTO SCM Agreement contains a definition of the term “subsidy”. The definition contains three basic elements: (i) a financial contribution (ii) by a government or any public body within the territory of a Member (iii) which confers a benefit. All three of these elements must be satisfied in order for a subsidy to exist (WTO, 2003A).
The Agreement contains a list of the types of measures that represent financial contributions (e.g., grants, loans, equity infusions, loan guarantees, fiscal incentives, the provision of goods or services, or the purchase of goods). In order for a financial contribution to be classified as a subsidy, it must be made by or at the direction of a government or any public body within the territory of a Member. Thus, the SCM Agreement applies not only to measures taken by national governments such as Japan for the 7e7 program, but also to measures taken by sub-national governments (e.g., the States of Washington and Kansas) or state-owned entities (e.g., Alenia in Italy).

Assuming that a measure is a subsidy within the meaning of the SCM Agreement, it nevertheless is not subject to the SCM Agreement unless it has been specifically provided to an enterprise or industry or group of enterprises or industries. The basic principle is that a subsidy that distorts the allocation of resources within an economy should be subject to discipline (WTO, 2003A). There are three types of “specificity” within the meaning of the SCM Agreement that would apply to the 7e7 program:

- Enterprise-specificity. A government targets a particular company or companies for subsidization (e.g., the proposed State of Kansas $500 million interest free bond for 7e7 nose and fuselage production).

- Industry-specificity. A government targets a particular sector or sectors for subsidization (e.g., the State of Washington’s $3.2 billion tax incentive/production subsidy for commercial aircraft production).

- Regional specificity. A government targets producers in specified parts of its territory for subsidization (e.g., the Japanese Government’s subsidy for the production of the wing and fuselage subassemblies for the 7e7 aircraft).

The SCM Agreement creates two basic categories of subsidies: those that are prohibited, and those that are actionable (i.e., subject to challenge in the WTO). All specific subsidies fall into one of these categories. Most subsidies, such as production subsidies, fall into the “actionable” category. The 7e7 launch proposal involves several actionable subsidies that the European Commission can challenge, either through multilateral dispute settlement or through countervailing action in the event that these subsidies adversely affect the interests of EU producers. The financial support from the Japanese government for the 7e7 program may also constitute prohibited subsidies as a result of their export contingent nature (for a detailed review of the legal issues surrounding the subsidy debate, see Pritchard and MacPherson, 2004).

WTO RESOLVING DISPUTES ON THE 7E7 SUBSIDIES

WTO members have agreed that if they believe fellow-members are violating trade rules, they will use the multilateral system of dispute resolution instead of taking action unilaterally. The Uruguay Round of the GATT introduced a more structured process with clearly defined stages. The agreement emphasizes that prompt settlement is essential, and the WTO has developed specific procedures and timetables for resolving disputes. If a case runs its full course to a first ruling (this should not normally take more than one year), then the company/nation that is the subject of the inquiry can appeal any WTO rulings that may emerge. If an appeal fails, it is close to impossible for the country losing a case to block the adoption of the ruling (WTO, 2003C).
We have outlined the possibility of 5 actionable and 1 prohibited WTO violations for the proposed launch of the 7e7 aircraft (see Table 2). We believe there is a high likelihood that WTO members will file disputes for the perceived prohibited subsidy of the 7e7 program by the Japanese government. One only needs to look at the ramifications of the technology gains the Japanese manufacturers will receive by producing the first ever all-composite airframe for the 7e7, which could be utilized on a new Japanese regional jet program. In fact, Mitsubishi recently announced that they are conducting a joint feasibility study with Boeing for a 30 seat regional jet, which would receive $206 million of financial support from the Japanese government (Seattle Post-Intelligencer, 2002). This newly developed technology could give the Japanese a competitive advantage in introducing an all-composite regional jet product family that would have operating characteristics costing 20% less per seat mile than current western models. Presumably Canada and Brazil would view this threat as potentially injurious to their own regional jet programs.

The aircraft producers are not the only ones that need to be concerned: the international airlines that would order the 7e7 for their long-range routes could be affected by WTO litigations. The launch customers comprised of Japan’s airlines ANA and JAL will require the 7e7 program to first supply the short-range version of the aircraft. This decision may be perceived by the international airlines as a defensive move from the Japanese in protecting their national airlines because they are not prioritizing the development of the baseline and longer-range versions of the 7e7. The later versions of the 7e7 would give the international airlines a competitive edge over the Japanese airlines on international routes. Secondly, should a WTO litigation be successful and a retroactive repayment plan be implemented, the Japanese might lack the funding to develop the design and tooling for launching the baseline and longer-range versions of the 7e7.

PRODUCTION OF THE 7e7

The 7e7 is expected to burn 20 percent less fuel than existing jets on both short and long haul routes. As mentioned earlier, Boeing is departing from its traditional role (i.e., designing and building commercial aircraft), and is fast adopting a system integration position which will involve risk sharing partners for the design and sub-integration of a radically new composite aircraft. Boeing is limiting its participation to the program with a 3-7 day final assembly process based on a new system integrator approach that will entail mating the 4 integrated aircraft sections along with mounting the engines and installing the interior. While this single moving production line for both the short and baseline versions of the 7e7 seems ideal for Boeing, what Boeing is really asking its risk-sharing partners to do is to design, build, and integrate components into large subassemblies for two different airplanes (Bowermaster, 2003).

The short haul model, with a range of 3,500 nautical miles, would have a maximum takeoff weight of 252,500 pounds. The reported weight savings will come from, among other things, lighter and shorter wings, lighter landing gear, and lighter electronic systems. But one has to question the commonality of components, structure and engine technologies to service two aircraft versions that have an over 45% weight difference. The risk-sharing partners could be looking at two completely different sets of designs and production tooling for building these two vastly different sizes of aircraft. As an example, the wing for the baseline model is 193 feet in length and has the capacity to hold fuel for 7800 nautical miles in comparison to the short haul version with a wing length of 170 feet for an aircraft with 3500 nautical
miles range. The first tier risk-sharing partners not only have to deal with two aircraft sizes, but they will also be in charge of the 'design and build' using new materials and manufacturing processes for the 7e7 that has never been attempted within the LCA sector before. The 7e7 will be the first LCA to tout a first-of-a-kind composite fuselage and wing, and will consist of 50 percent composite materials, 20 percent aluminum, 15 percent titanium and 15 percent steel. Contrast this with the Boeing 777, which is 70 percent aluminum, 12 percent steel, 11 percent composites and 7% other materials (Mecham, 2003B). Clearly, the 7e7 is a radically different type of aircraft.

In the past, Boeing suppliers bid on their work packages from a subcontractor relationship on a fixed-price contract basis, which would limit their liability. In today's LCA manufacturing environment, the supplier is being asked to absorb the non-recurring costs of the program and to exclude these costs from their pricing (as was traditionally done in the past). The Airbus A380 is a clear example, with suppliers contributing to the development costs of the airplane launch with an estimated $3.1 billion participation. But Boeing is moving to the next level, in that subcontractors are being asked to assume the role of risk-sharing partners responsible for the design of the aircraft. System integration has clear financial advantages for Boeing by limiting development and production cost overruns, which is deferred to the risk-sharing partners. So, from Boeing's perspective, why not try to launch a 7e7 program with two very different aircraft versions? After all, most of the cost and risk exposure for the 7e7 will be at the first-tier supplier level.

<table>
<thead>
<tr>
<th>Funding Source</th>
<th>Millions $</th>
<th>Item</th>
<th>Launch Aid</th>
<th>WTO Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>State of Washington</td>
<td>$3,200</td>
<td>Final Assembly</td>
<td>Production Subsidy</td>
<td>Actionable</td>
</tr>
<tr>
<td>State of Kansas</td>
<td>$200</td>
<td>Nose and Cockpit</td>
<td>Interest Free Bond</td>
<td>Actionable</td>
</tr>
<tr>
<td>Japanese Government</td>
<td>$1,588</td>
<td>Wing and Fuselage</td>
<td>Production Subsidy</td>
<td>Prohibited</td>
</tr>
<tr>
<td>Italian Government</td>
<td>$590</td>
<td>Rear Fuselage</td>
<td>Production Subsidy</td>
<td>Actionable</td>
</tr>
<tr>
<td>747 Special Freighters</td>
<td>$500</td>
<td>Production Transport</td>
<td>Production Subsidy</td>
<td>Actionable</td>
</tr>
<tr>
<td>7e7 Rail Barge</td>
<td>$16</td>
<td>Production Transport</td>
<td>Production Subsidy</td>
<td>Actionable</td>
</tr>
<tr>
<td>Supplier's Support</td>
<td>$3,100</td>
<td>Non-airframe suppliers</td>
<td>Non-Recurring Costs</td>
<td>Acceptable</td>
</tr>
<tr>
<td>Boeing</td>
<td>$4,200</td>
<td>7e7 launch funding</td>
<td>Self Financed</td>
<td>Acceptable</td>
</tr>
<tr>
<td>Total</td>
<td>$13,394</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2 summarizes the current launch funding proposals for the Boeing 7e7. These data indicate that a substantial portion (46 percent) of the estimated $13.4 billion in launch funding consists of actionable/prohibited subsidies under both the 1994 WTO-SCM Agreements and the 1992 US-EU Agreement on Trade in Large Civil Aircraft. The cartogram shown in Figure 1 offers a geographic representation of the structure of actionable and prohibited launch funding. Of the roughly $6 billion in launch funding that could be challenged by the WTO, 60% can be traced to the state of Washington, 3.3% to the state of Kansas, 26% to Japan, and 9.6% to Italy.

Our research indicates that the launch costs for the 7e7 will be approximately $13.4 billion dollars. This can be benchmarked against Boeing’s reported 777-development cost of $6-7 billion that dates back to the early 1990s (compared to industry analyst estimates of somewhere between $8-12 billion). A recent comparison would be with the Airbus A380 with a reported launch cost of $10-12 billion, which in some estimates could be under by $3-5 billion. The 7e7 launch costs will be every bit as much as the A380 aircraft, though a smaller aircraft in size. Boeing is asking its partners to design and build two different sized aircraft. This will drive the cost of different sized engines, landing gears, airframe structure, facility space, tooling and additional machine tools to accommodate the launch of the 7e7. Given that a high proportion of the launch costs for the 7e7 will be covered by subsidies and/or Boeing’s risk-sharing partners, Boeing’s Board of Directors might be looking at a profitable venture in the 7e7 provided that WTO litigations do not take place (or are successfully appealed if they do).

STATE OF WASHINGTON

The State of Washington House Bill 2294 tax incentives are contingent on the governor signing a memorandum of agreement with Boeing to “site a significant commercial airplane final assembly facility” in the state (State of Washington, 2003). The bill contains eight specific tax changes, but the majority of the subsidy package (91% of the tax incentive) can be traced to a reduction in the State of Washington’s Business and Occupancy tax rate (Washington Research Council, 2003). This tax incentive is in clear violation of WTO rules on providing production subsidies based on the following language from the House Bill 2294 “Beginning October 1, 2005, upon every person engaging within this state in the business of manufacturing commercial airplanes, or components of such airplanes, as to such persons the amount of tax with respect to such business shall, in the case of manufacturers, be equal to the value of the product manufactured, or in the case of processors for hire, be equal to the gross income of the business multiplied by the rate of 0.4235 percent from October 1, 2005, through June 30, 2007, or the day preceding the date final assembly of a superefficient airplane begins in Washington state, as determined under section 17 of this act; and 0.2904 percent beginning on July 1, 2007, or the date final assembly of superefficient airplane begins in Washington State, as determined under section 17 of this act. (State of Washington, 2003).

Based on the definitions in the House Bill 2294, the tax incentives are clearly defined for the support of manufacturing activity on commercial aircraft categorized as ‘large aircraft’ and identifies the production rate requirements for this tax incentive.

"Final assembly of a superefficient airplane" means the activity of assembling an airplane from component parts necessary for its mechanical operation such that the
Figure 1.
Key patterns of actionable or prohibited launch funding for the Boeing 7e7
finished commercial airplane is ready to deliver to the ultimate consumer.”

“Superefficient airplane” means a twin aisle airplane that carries between two hundred and three hundred and fifty passengers, with a range of more than seven thousand two hundred nautical miles, a cruising speed of approximately mach .85, and that uses fifteen to twenty percent less fuel than other similar airplanes on the market. (State of Washington, 2003).

“Significant commercial airplane final assembly facility” means a location with the capacity to produce at least thirty six super efficient airplanes a year (State of Washington, 2003).

The Business and Occupancy (B&O) tax is the major business tax in the state, calculated as a percentage of revenues, and will apply to the production of all Boeing aircraft models assembled in the State of Washington (not just the 7E7) (State of Washington, 2003). The bill creates a separate B&O tax category for manufacturing commercial airplanes and their components. The general B&O rate for manufac-
turing is 0.484 percent. The rate for commercial airplanes will drop first to 0.4235 percent beginning October 1, 2005 (a 12.5 percent reduction) and then to 0.2904 percent (a 40 percent reduction) on July 1, 2007 or on the date that final assembly of the 7E7 commences, if that is later. The rate reverts to 0.484 percent on July 1, 2024 (Washington Research Council, 2003). The Department of Revenue has prepared estimates of the value of these tax incentives over the 20-year period that they would be in effect (all of the tax incentives expire on July 1, 2024). The calculations lay out three scenarios: the 7E7 is assembled at Everett; it is assembled at Moses Lake in a privately built facility; and it is built at Moses Lake in a Port-built facility. The values of the tax exemptions are $3.2 billion, $3.7 billion and $3.4 billion respectively under the three alternative scenarios (Washington Research Council, 2003). In all three cases, the bulk of the value, $3.0 billion, is due to the reduction in B&O rates on the production of all Boeing aircraft models (see Figure 2).

![Figure 2. Distribution of Tax Incentives For 7E7 Built at Everett ($3.2 Billion over 20 Years)](source: Depart. of Revenue)
STATE OF KANSAS

The State of Kansas approved a special incentive package to help bring work on Boeing’s proposed 7E7 airplane to Wichita. The bill that resulted, S.B. 281, was passed by the Legislature and signed by the Governor. It authorizes the Kansas Development Finance Authority (KDFA) to issue up to $500 million in bonds to finance the project. The company would be responsible for repaying the principal, but the interest would be paid for by withholding taxes on the salaries of persons employed on the 7e7 project (Kansas Department of Commerce & Housing, 2003). Based on a 20-year payback with annual installments at an interest rate of 5%, this government subsidy for production of the 7e7 nose section and fuselage would equate to $200 million.

STATE OF OKLAHOMA

The State of Oklahoma proposal provides incentives for Boeing to produce parts for the 7E7 commercial aircraft in Tulsa, creating up to 800 new Boeing jobs. We believe Boeing will not fulfill its production commitments to make it eligible for the full $350 million subsidy. This is why we did not include Oklahoma in our proposed launch funding calculation. It remains to be seen how much assistance Boeing will receive from the state based on 7e7 leading edge work assigned to the Boeing factory in Tulsa. The state government had offered Boeing an interest free bond of $250 million for production support and $100 million in research and development incentives (Voorhis, 2003). The state intends to pay for these subsidies to Boeing with a proposed 4/10th of a one penny, 13-year increase in the Tulsa County Tax (Vision 2025, 2003).

JAPAN

In determining the $1.58 billion launch funding the Japanese government will supply in subsidies and loans to the five Japanese manufacturers, we assume that Japan’s total workshare will be at 35% of the 7e7. On this basis, we assigned a subsidy figure of $45.3 million per one percent of workshare times the 35% content. The $45.3 million per one percent of workshare was derived from Italian investment for the 7e7 of $590 million for 13% of the 7e7 workshare. This method was utilized because Japan’s Ministry of Economics, Trade and Industry (METI) is now determining the volume of subsidies and loans to be provided to manufacturers (Sobie, 2003). The Japanese Congress says it will seek national project status for the 7E7 (Ionides, 2003). In exchange for national project commitment, the Japan Aircraft Development Corporation (JADC) expects Boeing to give Mitsubishi the wing, Kawasaki the fuselage and Fuji the center wing (Sobie, 2003).

ITALY

Alenia expects to commit 500 million euros ($590 million) in investment over the next four years to win a 13% stake in 7e7 development and manufacturing (Mecham, 2003A). The investment would be needed to fund production upgrades and new tooling at Alenia’s facilities in southern Italy to employ 1,000 new workers to meet its 7e7 commitments. Boeing is using Alenia as a conduit to court Italy’s government funding for the 7e7 program. But this should come as no surprise because Boeing/McDonnell Douglas programs have been the beneficiaries of previous Italian state aid programs in the past. The two Boeing programs that resulted in Italian production subsidies to Alenia in the past include the MD95/Boeing 717 project for the automated production of large structural fuselage sections and MD 11 projects to im-
prove automated production of a new generation of key aircraft parts, such as the forward section and the tail section. These two programs are a part of the European Commission complaint that has assessed 13 Italian R&D projects in the aeronautical sector alleging that the Italian government had not notified aid granted in research and development funds for about $3.7 billion (€3.2 billion) in favor of the aeronautical industry for the period covering 1999 through 2005 (European Commission, 2003). This EC complaint could prove to be an obstacle for Alenia in receiving production development funding for the 7e7 program.

747 FREIGHTERS AND RAIL BARGE

The Boeing Company asked states bidding for the 7E7 final assembly plant to subsidize the estimated $300 million to $500 million cost of purchasing and converting the 747s that will deliver parts to the final assembly site(s) (Bowermaster, 2003). Three converted 747 freighters will be Boeing’s primary means of transporting large production subassemblies from risk sharing suppliers to the 7E7 final assembly site in Everett. This is in contrast to Airbus, which had a customized Roll on Roll off vessel built in China to transport the A380 airframe structure. The A380 RoRo vessel is taken by Airbus on a Time Charter contract for a period of 20 years. This is a commercial arrangement without any government support and is equivalent to a wet lease operated by a joint venture between Fret/Cetam. The State of Washington Legislature is also considering providing approximately $16 million for the construction of a rail barge facility as part of the State’s incentive package to the Boeing Company to build the new 7E7 airliner at the Everett plant (Wallace, 2003). The purpose of this project is to allow the trans-shipment of much larger oversized aircraft component containers from the Port of Everett’s deepwater marine terminal to Boeing’s Everett plant (Port of Everett, 2003). This facility would not only support the 7e7 production program but all current aircraft programs at the Everett plant.

Boeing

The $4.2 billion launch cost is based on two factors: first is from Boeing statements that the 777 launch costs were between $6-7 billion, though Boeing has never officially disclosed the actual costs but did say the company called the 777 program at the time “the world’s most expensive privately funded commercial venture” (Branegan, 1995). The second factor is based on statements from Boeing board members in 2003 that has targeted the Boeing contribution to the 7e7 program at no more than 60% of the 777 program (Pae, 2003). Thus, $7 billion times the 60% contribution limit gives us an estimated $4.2 billion Boeing contribution to the 7e7 program. The Boeing self-financed portion of $4.2 billion is less than the comparable $5.2 billion that EADS and BAE Systems self financed for the A380 program (EADS, 2003). We can expect new production subsidies to evolve as the program moves forward with first tier risk sharing partners developing second tier subcontractors.

DISCUSSION & CONCLUSION

The Airbus versus Boeing subsidy debate has been raging for more than three decades (for a concise overview, see Esty and Ghemawat, 2002). A new debate would likely differ from earlier disagreements in at least three respects. First, the 7e7 launch plan includes both foreign and domestic subsidies. Second, close to 50% of the launch funding is slated to come from sources that are classified as ‘actionable’ or ‘prohibited’ under the WTO’s subsidy rules. Third, substantial state-level subsidies are part of the launch plan (e.g., $3.2 billion
from the state of Washington). Taken together, these three elements of the launch process add up to a public/private partnership of massive scale. From a public policy perspective, one has to question whether this represents good value for money. Given that most of the value added on the 7e7 will be earned by foreign partners rather than by Boeing or by US-based suppliers, US institutions might better serve the national interest by subsidizing those aspects of Boeing’s aerospace business that operate with higher US content. Alternatively, subsidies might be allocated to Boeing for key parts of the airframe (e.g., wings), so that the US could at least maintain its core competence in airframe design and production. While Boeing is a global company, which means that production must also be global, the devolution of critical tasks to foreign suppliers ultimately raises strategic questions regarding the long-run viability of US commercial aircraft production in the LCA category.

The proposed structure of launch funding for the 7e7 clearly violates global as well as plurilateral subsidy regulations. Subsidies deployed by the governments of foreign production partners also violate these regulations. While the theory of strategic trade policy suggests that subsidies can be justified if the ultimate benefits exceed the costs, there is no direct or robust method of estimating these ‘benefits’. Given that as much as 70 percent of the 7e7 will be manufactured outside the US, the domestic employment impact of this venture is likely to be much lower than has been true in the past for a new US aircraft launch. To complicate matters, the 7e7 has yet to attract any firmly committed launch customers. Further, the selling price of the 7e7 may ultimately be increased beyond current expectations if a WTO ruling allows injured parties to adopt countervailing measures. Will the world’s airlines want to commit to the 7e7 under these circumstances? From a game-theoretic perspective, Airbus might respond to the 7e7 subsidy package with new production subsidies for Airbus products. Who would win the ‘subsidy war’? Given the importance of LCA exports to both the EU and the US, a subsidy war is a distinct possibility. Such a war, of course, would contravene the spirit and mandate of the WTO at a time when the thrust toward more liberalized international trade is already floundering.

It is worth repeating that the 7e7 risk-sharing strategy proposed by Boeing is new to the LCA industry in at least two important respects. First, risk-sharing partners are being asked to absorb the full non-recurring costs of subassembly development (including design). This dramatically reduces launch costs for the prime contractor. Second, risk-sharing partners are being asked to produce extremely complex and technologically advanced parts of the airframe. Presumably these companies will experience cost over-runs as they attempt to ‘get it right’. Japan, for instance, has never built large composite structures for large aircraft before. Should Japan obtain this competence with help from Boeing, what is to stop this particular risk-sharing partner from eventually building its own aircraft industry to compete with the original systems integrator? These are, admittedly, very complex issues that go beyond the scope of this paper. Nevertheless, the potential implications for the geography of LCA production at the global level are nothing short of enormous.

Finally, we should note that the analysis presented earlier opens up new sets of research questions for economic geographers, trade policy analysts, and students of industrial organization. To begin with, how efficient are public subsidies in terms of both short and long-run regional economic effects? Second, to what extent might glob-
ally organized systems integration be
tweaked so as to comply with WTO regula-
tions on production subsidies? Third, what
is the net impact of systems integration on
international patterns of intra-industry
trade and the US balance of payments?
Fourth, what are the long-run strategic
implications of global subcontracting and
knowledge transfer for company-level, re-
geonal, or national innovation capability?
While we have not done a terribly good job
of profiling these types of issues in the pre-
sent paper, there is clearly considerable
scope for additional research on the geog-
raphy and structure of LCA production as
the 2000s unfold. We hope to conduct fur-
ther research in these areas over the near
future.

REFERENCES
Becker, M.C. and Zirpoli, F. 2003. Organizing
new product development: knowledge hollow-
ing-out and knowledge integration - the FIAT
and Production Management, 23:1033-1061.

Bowermaster, D. 2003. Boeing designs 2 models
of 7E7 to satisfy clients. Seattletimes.com No-
vember 4, www.seattletimes.nwsource.com

Branegan, J. 1995. Boeing wins a big one.
Time, November 27. www.time.com

Commission of the Future of the US Aerospace
sion on the Future of the United States Aero-

Esty, B.C. and Ghemawat, P. 2002. Airbus ver-
sus Boeing: A case of failed pre-emption. Work-
ing Paper, Harvard Business School, Boston,
MA 02163.

EADS 2003. European Aeronautic Defence and
Space Company EADS N.V. Financial Year

Eriksson, S. 1995. Global Shift in the Aircraft
Industry. School of Economics and Commercial
Law, Department of Geography, University of
Gothenburg.

Barriers to Trade and Investment. Brussels,

investigations on six Italian R&D projects in
the aeronautical industry. Commission Press
Room IP/03/1319, October 1, 2003.

GATT, 1979. Agreement on Trade in Civil Air-
craft. www.ita.doc.gov

Hart-Smith, L.J. 1998. On the adverse conse-
quences of cost-performance metrics usurping
the role of goals they were supposed to support.
Paper presented at the 21st Congress of the In-
ternational Council of the Aeronautical Sci-
ences, Melbourne, Australia, September 13-18.

Ionides, N. 2003. Japanese carrier believed to
favour new Boeing airliner, but outsider Airbus
promises to offer “something new”. Flight In-
ternational, November 4.

Kash, D.E. and Rycoft, R.W. 2000. Patterns of
innovating complex technologies: a framework
for adaptive network strategies. Research Pol-
cy, 29:819-831.

Kansas, 2003. Supplemental Note on Senate
Bill No. 281. www.kslegislature.org

Kansas Department of Commerce & Housing,
Kansas Legislative Session June 2003.
www.kdoch.state.ks.us/kdochdocs/AD/2003_Final_
Legislative_Summary.doc

global decentralization of U.S. commercial air-
craft production: implications for employment
and trade. Futures 35:221-238.

Mecham, M. 2003A. Boeing is Betting on its
Supply Chain for the 7E7. Aviation Week &

Mecham, M. 2003B. Boeing Commits to
Shorter-Range 7E7. Aviation Week & Technol-

The structural dynamics of the pharmaceutical industry

An analysis of prescription drug costs in the United States & Canadian Markets

Kylie Douglas
Department of Economics
Indiana State University
Terre Haute, IN 47809 USA

Robert Guell
Department of Economics
Indiana State University
Terre Haute, IN 47809 USA
r-guell@indstate.edu

It is axiomatic that prescription drug prices are higher in the United States than Canada. While many politicians and consumer advocates consider this *prima facie* evidence of drug company greed, economists are less quick to judge. The monopoly offered by patents generates the profits that are necessary to motivate innovation. Still, the evidence is rather overwhelming that drug prices vastly exceed their marginal production costs. The existence of price controls in many nations creates an exaggerated version of price discrimination in the pharmaceutical industry and this, in turn, offers a unique ability to directly measure the loss in efficiency that results from the market structure of this industry.

We begin by offering *prima facie* evidence that pharmaceutical industry profitability is inefficiently high and continue by describing the Guell (1995, 1998) methodology for estimating pharmaceutical static inefficiency. We note that reducing static inefficiency, that which arises at the production-sale stage, comes at a cost of creating dynamic inefficiency, that which arises when too little is invested in research and development. We proceed by noting that the Food and Drug Administration’s ban on the re-importation of prescription drugs in the United States is an example of price discrimination that allows us to use Canadian controlled drug prices to function as an upper-bound estimate of marginal cost. We conclude by using these 2002 Canadian prices to update dead weight loss calculations found in Guell (1995, 1998) in which the 1993 United Kingdom drug price data reported by the U.S. Congress’s General Accounting Office was used to create dead weight loss estimates.

The *Prima Facie* Case

There has been a great deal of concern in recent years about the rising costs of prescription drugs in the United States. The popular sentiment is that Ameri-
cans are paying far too much for their medications and there is an abundance of evidence that the patent-created monopoly power leads Americans to pay more for their prescriptions.

There is no debating the fact that U.S. pharmaceutical companies enjoy very large profits. In comparison to other industries, pharmaceutical manufacturers are the highest-ranking industry in terms of profitability. Over the last several years, the median profitability for all Fortune 500 firms was less than one third of the profitability of the pharmaceutical industry. (Kaiser, November 2001).

This is exacerbated by the fact that prescription expenditures are growing more quickly than overall health care spending. While the rate of growth in prescription drug spending has decreased since 1999 and is expected to continue to decrease in coming years, its average annual rate of increase is projected to be 11.1 percent through 2012. (Heffler).

There are three main factors contributing to the recent increase in the relative position of prescription drugs in health care expenditures. First, as new drugs for common maladies have become prevalent, the sheer number of prescriptions written has increased. Second, the types of drugs prescribed have changed to newer and more expensive drugs. Finally, manufacture price increases account for about 26 percent of the change (Kaiser, May 2003).

While we will focus primarily on the price comparisons between the United States and Canada, similar comparisons can be pointed to with regard to Mexico and Europe. Tables 1 illustrates the significant differences that exist between prices charges in the U.S. and Canadian drugs. We gathered U.S. and Canadian prescription drug prices from two readily available online pharmacies (Canadian drug prices: http://www.rx1.biz/index.htm; U.S. drug prices: http://www.drugstore.com). While different web pharmacies offered slightly different prices and delivery services, the differences within the countries were trivial relative to the differences between the countries. These drugs account for approximately half of the prescription drugs sales in the United States and were the only ones for which publicly available data exists on U.S. prices, Canadian prices, and U.S. sales. The sales weighted ratio of Canadian prices to U.S. prices for these drugs is .628, slightly more than the .60 that Guell (1995, 1998) reported for U.K. to U.S. prices. ¹

Canadian Prices and U.S. Law

There have been many proposals to ease the financial burden experienced by Americans with regard to prescription drug prices though few have gotten more than cursory attention in Congress. The 2003 changes to Medicare offer a modest insurance plan for prescription drug coverage but suggest no means by which to curtail their increase; moreover it expressly forbids Medicare from using its own market power as the single leading buyer of prescription drugs.

¹ Because the price control mechanisms in Canada are different that the price control mechanisms in U.K. we can not conclude that the difference in drug prices is shrinking.
prescription drugs to negotiate lower prices.

What many had been looking for in the Medicare bill was a re-importation provision what would direct the Food and Drug Administration to allow Canadian pharmacies to sell in the U.S. Under current U.S. law, re-importation can only happen if the Secretary of the Department of Health and Human Services certifies that it would be done in a safe manner that would not result in health risks and would lead to a significant drop in drug costs. Neither President Clinton’s nor President Bush’s Secretary of Health and Human Services would so certify.

While many consider this a cynical payoff to the pharmaceutical industry for their campaign contributions, there are legitimate arguments for disallowing re-importation. The safety question is somewhat specious in that these are quite literally the same drugs in the same packages. Many were produced in the U.S. for the combined U.S.-Canadian market. The real safety concern would be with drug interactions that a local pharmacy may catch that an online pharmacy would not.2

In any event, Canadian pharmacies currently purchase prescription drugs from American pharmaceutical manufacturers at much lower prices than do American pharmacies. In part this is due to the system of price controls that exist in Canada. These pharmacies can then sell the drugs at a much lower price than pharmacies in the U.S. while still maintaining a profit.

The more substantial argument against allowing re-importation, and the one supported by many pharmaceutical economists, is that price controls would create dynamic inefficiency by deterring research and investment into new drugs. The United States pharmaceutical industry invests far more money and time into the development of new prescription drugs than any other country (Scherer 2001). Add that to the fact that European research dollars are invested in hopes of tapping into high potential profits emanating from U.S. markets. As a result any form of control would contribute to a reduction in profits to the inventing companies thereby decreasing rates of return and diminishing research and development.

Stated simply, re-importation of drugs from Canada would effectively impose Canadian price controls on U.S. markets. We would enjoy the benefits of lower prices and greater availability thereby reducing static inefficiency. We would also reduce future investment causing dynamic inefficiency (Guell 1995).

Price Discrimination and Using The Canadian Price as a Proxy for Marginal Cost

Economists are quite familiar with the notion of price discrimination where consumers are charged for a good based on their ability and desire to pay for the good rather than charging an equal price to everyone. Price discrimination only works if a buyer (who pays little) can not easily resell what they have

2 This would apply to U.S. based online pharmacies as well.
purchased to someone else facing a higher price. The pharmaceutical industry is a classic example of a market in which price discrimination functions because it is against the law in many nations to re-import drugs for resale. In this way, a U.S. manufacturer can charge Canadian pharmacies a lower price than they charge U.S. pharmacies and not have to worry that a significant number of U.S. consumers will be able to buy their drugs from the Canadian pharmacy. The only U.S. consumers that can legally avoid paying the high U.S. prices are those who live within driving distance of Canada (or Mexico.)

Sometimes there is no foreign law requiring that a U.S. manufacturer sell their drugs at lower prices. They do it because it is in their own financial interest because lower foreign income, lowers foreign demand for drugs and (taken in isolation) the company can generate great profits by selling at lower prices. In any event, either because U.S. firms choose to the price of Canada-bound drugs or have it set for them by the Canadian drug price control mechanism, they sell their drugs there voluntarily. This price can then be taken as an upper-bound estimate of the marginal production cost of the drug. (Guell, 1995)

Dead Weight Loss Calculations

Economists measure the loss to society, or static inefficiency, from a good being over-priced or under-priced with the concept of dead weight loss. Conceptually dead weight loss is the difference between the maximum net gain to consumers and producers and the actual net gain to consumers and producers. Referring to Figure 1 below, if the marginal cost is constant (at the Canadian price, \(P_2 \)) and the market were in perfect competition the consumer surplus would be the difference between what consumer would pay for the good (\(OACQ_2 \)) and what they have to pay (\(OP_2CQ_2 \)). Similarly producer surplus is the difference between what firms receive for their goods (\(OP_2CQ_2 \)) and their costs which are represented by the area under the MC curve (also \(OP_2CQ_2 \)) (see Figure 1). The combined area of consumer and producer surplus is \(P_2AC \). If the firm is a monopolist then they set quantity, \(Q_1 \), such that the marginal cost equals the marginal revenue and price accordingly, \(P_2 \). The consumer surplus drops to \(P_1AB \). Producer surplus rises to \(P_2P_1BE \) but the combined area falls by EBC: the deadweight loss.

Regardless of the control structure, by international agreement drug manufacturers maintain their patent right to be the monopoly seller of drugs in Canada. It is axiomatic to economists that monopolists would not sell their wares
Table 1

Canadian and U.S. Prescription Drug Prices, U.S. Sales, and Estimates of Dead Weight Loss

<table>
<thead>
<tr>
<th>Drug</th>
<th>Treatment For</th>
<th>U.S. Price</th>
<th>Canada Price</th>
<th>Percent Difference in Prices</th>
<th>Sales in Millions</th>
<th>DWL as % of Sales</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biaxin*</td>
<td>Skin Infection</td>
<td>214.98</td>
<td>78.00</td>
<td>63.72</td>
<td>537</td>
<td>55.95</td>
</tr>
<tr>
<td>Celebrex</td>
<td>Arthritis</td>
<td>74.99</td>
<td>47.38</td>
<td>36.82</td>
<td>2619</td>
<td>10.73</td>
</tr>
<tr>
<td>Celexa</td>
<td>Depression</td>
<td>66.99</td>
<td>47.87</td>
<td>28.54</td>
<td>1587</td>
<td>5.70</td>
</tr>
<tr>
<td>Claritin*</td>
<td>Allergies</td>
<td>48.31</td>
<td>15.75</td>
<td>67.40</td>
<td>2716</td>
<td>69.67</td>
</tr>
<tr>
<td>Cordarone</td>
<td>Heart Ahythmia</td>
<td>373.83</td>
<td>119.95</td>
<td>67.91</td>
<td>265</td>
<td>71.87</td>
</tr>
<tr>
<td>Detroil*</td>
<td>Overactive Bladder</td>
<td>89.99</td>
<td>55.65</td>
<td>38.16</td>
<td>488</td>
<td>11.77</td>
</tr>
<tr>
<td>Effexor*</td>
<td>Depression</td>
<td>49.99</td>
<td>42.84</td>
<td>14.30</td>
<td>1098</td>
<td>1.19</td>
</tr>
<tr>
<td>Evista*</td>
<td>Osteoporosis</td>
<td>70.99</td>
<td>52.88</td>
<td>25.11</td>
<td>526</td>
<td>4.37</td>
</tr>
<tr>
<td>Flomax*</td>
<td>Enlarged Prostate</td>
<td>53.19</td>
<td>29.44</td>
<td>44.65</td>
<td>411</td>
<td>18.01</td>
</tr>
<tr>
<td>Floxin*</td>
<td>Pelvic Inflammatory Disease</td>
<td>60.92</td>
<td>27.63</td>
<td>54.65</td>
<td>993</td>
<td>32.92</td>
</tr>
<tr>
<td>Fosamax</td>
<td>Osteoporosis</td>
<td>68.99</td>
<td>51.04</td>
<td>26.02</td>
<td>1614</td>
<td>4.58</td>
</tr>
<tr>
<td>Glucophage*</td>
<td>Diabetes</td>
<td>46.99</td>
<td>13.76</td>
<td>70.72</td>
<td>2655</td>
<td>85.39</td>
</tr>
<tr>
<td>Lipitor</td>
<td>Cholesterol</td>
<td>62.99</td>
<td>57.01</td>
<td>9.49</td>
<td>6088</td>
<td>5.00</td>
</tr>
<tr>
<td>Nasonex*</td>
<td>Allergies</td>
<td>63.99</td>
<td>28.35</td>
<td>55.70</td>
<td>750</td>
<td>35.01</td>
</tr>
<tr>
<td>Neurontin</td>
<td>Neuropathic Pain</td>
<td>45.99</td>
<td>44.71</td>
<td>2.78</td>
<td>2018</td>
<td>0.04</td>
</tr>
<tr>
<td>Nexium</td>
<td>Heartburn</td>
<td>120.99</td>
<td>72.50</td>
<td>40.08</td>
<td>1948</td>
<td>13.40</td>
</tr>
<tr>
<td>Paxil</td>
<td>Depression</td>
<td>74.99</td>
<td>55.85</td>
<td>25.52</td>
<td>2341</td>
<td>4.37</td>
</tr>
<tr>
<td>Plavix</td>
<td>Heart Attack Prevention</td>
<td>107.99</td>
<td>80.00</td>
<td>25.92</td>
<td>1611</td>
<td>4.53</td>
</tr>
<tr>
<td>Pravachol</td>
<td>Heart Attack Prevention</td>
<td>79.99</td>
<td>54.64</td>
<td>31.69</td>
<td>1766</td>
<td>7.35</td>
</tr>
<tr>
<td>Premarin*</td>
<td>Menopause</td>
<td>21.99</td>
<td>6.30</td>
<td>71.35</td>
<td>1796</td>
<td>88.85</td>
</tr>
<tr>
<td>Prevacid</td>
<td>Acid Reflux</td>
<td>120.99</td>
<td>68.03</td>
<td>43.77</td>
<td>3658</td>
<td>17.04</td>
</tr>
<tr>
<td>Prilosec</td>
<td>Acid Reflux</td>
<td>89.00</td>
<td>62.10</td>
<td>30.22</td>
<td>3537</td>
<td>6.55</td>
</tr>
<tr>
<td>Prinivil</td>
<td>High Blood Pressure</td>
<td>33.99</td>
<td>7.56</td>
<td>77.76</td>
<td>1165</td>
<td>135.92</td>
</tr>
<tr>
<td>Protonix*</td>
<td>Erosive Esophagitis</td>
<td>98.99</td>
<td>59.62</td>
<td>39.77</td>
<td>561</td>
<td>13.13</td>
</tr>
<tr>
<td>Prozac*</td>
<td>Depression</td>
<td>102.53</td>
<td>55.13</td>
<td>46.23</td>
<td>1659</td>
<td>19.87</td>
</tr>
<tr>
<td>Risperdal</td>
<td>Antipsychotic</td>
<td>80.33</td>
<td>25.28</td>
<td>68.53</td>
<td>1805</td>
<td>74.62</td>
</tr>
<tr>
<td>Singular*</td>
<td>Allergies</td>
<td>81.99</td>
<td>52.50</td>
<td>35.97</td>
<td>1060</td>
<td>10.10</td>
</tr>
<tr>
<td>Synthroid*</td>
<td>Thyroid Disease</td>
<td>10.99</td>
<td>4.27</td>
<td>61.15</td>
<td>445</td>
<td>48.12</td>
</tr>
<tr>
<td>Tricor</td>
<td>Cholesterol</td>
<td>84.99</td>
<td>48.30</td>
<td>43.17</td>
<td>264</td>
<td>16.40</td>
</tr>
<tr>
<td>Vioxx</td>
<td>Arthritis</td>
<td>78.99</td>
<td>47.39</td>
<td>40.01</td>
<td>1848</td>
<td>13.34</td>
</tr>
<tr>
<td>Xalatan*</td>
<td>Glaucoma</td>
<td>50.99</td>
<td>34.65</td>
<td>32.05</td>
<td>391</td>
<td>7.56</td>
</tr>
<tr>
<td>Zithromax*</td>
<td>Bacteria</td>
<td>110.25</td>
<td>66.99</td>
<td>39.24</td>
<td>1137</td>
<td>12.67</td>
</tr>
<tr>
<td>Zocor</td>
<td>Cholesterol</td>
<td>51.99</td>
<td>37.77</td>
<td>27.35</td>
<td>4173</td>
<td>5.15</td>
</tr>
<tr>
<td>Zoloft</td>
<td>Depression</td>
<td>69.99</td>
<td>35.05</td>
<td>49.92</td>
<td>2644</td>
<td>24.88</td>
</tr>
<tr>
<td>Zyprexa</td>
<td>Schizophrenia</td>
<td>147.99</td>
<td>60.07</td>
<td>59.41</td>
<td>2886</td>
<td>43.48</td>
</tr>
</tbody>
</table>

* denotes 2001 annual sales data; all others are 2002

beyond the point where demand is unit elastic. As a result we can also assume that the elasticity of demand is no less than unit elastic. Looking back to Figure 1 this implies that \(P_1Q_1 \geq P_2Q_2 \). As per Guell (1995, see the mathematical appendix), with this assumption in place the rest of the math to calculate dead weight loss relies only on total sales and the ratio of the Canadian price to the U.S. price.

Results
The dead weight loss per dollar of sales estimates closely resemble the results from analysis performed using European price data (Guell, 1995, 1998). In terms of dead weight loss, no systematic differences exist between those drugs treating serious illnesses (heart disease, cholesterol, etc.) and those treating less serious afflictions (allergies, heartburn, etc.). What does appear is that those maladies with more alternative treatments (such as depression) have relative low levels of dead weight loss per dollar of sales. Nevertheless, the sheer level of static inefficiency ($15 billion) and in particular that it is one-third of the sales of these drugs ($60 billion) makes clear that the dynamic efficiency that comes with high profits also comes at a very high price (in static inefficiency.)

REFERENCES

BACKGROUND

The following maps were created as a culminating experience in GEOG417/517 Industrial Geography at Indiana State University. In the Spring of 2004, GEOG417/517 had a total of 8 undergraduate and 3 first-year geography graduate students enrolled. The undergraduate students were predominantly non-majors—1 sociologists, and 4 social studies education students—with 3 geographers. The students were subdivided in 3 groups with graduate students assigned as team leaders and charged with mapping total employment and establishments by industrial sector at the county-level. Students obtained 2001 NAICS data from the Geospatial and Statistical Data Center’s interactive County Business Patterns resource at the University of Virginia. Finally, students were required to collaboratively work on establishing a shared design, classification, and symbolization scheme in ArcGIS. The intent of the project was to concretize the course through a hands on experience that: (1) enabled students to gain increased familiarity with Indiana’s diverse economy, (2) developed on-line data acquisition skills, and (3) further skill development in the area of geo-techniques and related data manipulation, analysis, and presentation tasks.
Population and MSAs in Indiana

Population in Indiana (2000)

of Residents
- 14001 - 990045
- 35001 - 490068
- 22501 - 350068
- 19001 - 225068
- 4623 - 19000

MSA Regions in Indiana

Source: GeoStats (2004) 2001 County Business Patterns
NAICS 11: Agricultural Support
Employment in Indiana
2001

Total Employment

Percent Employment

Source: GeoStats (2004) 2001 County Business Patterns

NAICS 11: Agricultural Support
Firms in Indiana
2001

Total Firms

Average Firm Size

Source: GeoStats (2004) 2001 County Business Patterns
NAICS 325 & 326: Chemicals & Polymers
Employment in Indiana
2001

Total Employment

Percent Employment

of Employees

2737 - 8396
1820 - 2736
795 - 1819
202 - 795
10 - 201
No Data

% of Employees

0.201196 - 0.257435
0.196406 - 0.201196
0.191950 - 0.196406
0.186445 - 0.191950
0.180937 - 0.186445
0.000000 - 0.180937
No Data

Source: GeoStats (2004) 2001 County Business Patterns

NAICS 325 & 326: Chemicals & Polymers
Firms in Indiana
2001

Total Firms

Average Firm Size

of Firms

84 - 118
29 - 63
19 - 20
11 - 14
1 - 5
No Data

Firm Employed

8.4 - 10000
17.2 - 80000
47.0 - 200000
40.4 - 500000
42.5 - 750000
42.5 - 750000
42.5 - 750000
42.5 - 750000
No Data

Source: GeoStats (2004) 2001 County Business Patterns
NAICS 334 & 335: Computers & Electronics
Employment in Indiana
2001

Source: GeoStats (2004) 2001 County Business Patterns

NAICS 334 & 335: Computers & Electronics
Firms in Indiana
2001

Source: GeoStats (2004) 2001 County Business Patterns
NAICS 327, 331, & 332: Metals Employment in Indiana 2001

Total Employment

Percent Employment

NAICS 327, 331, & 332: Metals Firms in Indiana 2001

Total Firms

Average Firm Size

Source: GeStats (2004) 2001 County Business Patterns
NAICS 336: Transportation Manufacturing Employment in Indiana
2001

Source: GeoStats (2004) 2001 County Business Patterns

NAICS 336: Transportation Manufacturing Firms in Indiana
2001

Source: GeoStats (2004) 2001 County Business Patterns
NAICS 51: Information
Employment in Indiana
2001

Source: GeoStats (2004) 2001 County Business Patterns

NAICS 51: Information
Firms in Indiana
2001

Source: GeoStats (2004) 2001 County Business Patterns
NAICS 52: Finance & Insurance
Employment in Indiana
2001

Source: GeoStats (2004) 2001 County Business Patterns

NAICS 52: Finance & Insurance
Firms in Indiana
2001

Source: GeoStats (2004) 2001 County Business Patterns
NAICS 54: Scientific & Technical Employment in Indiana 2001

Source: GeoStats (2004) 2001 County Business Patterns

NAICS 54: Scientific & Technical Firms in Indiana 2001

Source: GeoStats (2004) 2001 County Business Patterns
Manuscript Reviewers, Volume 1

The editors greatly appreciate the assistance of the many reviewers and the editorial board who have worked to insure that The Industrial Geographer establishes a record of publishing quality scholarship. The reviewers for the inaugural volume were:

S. Bagchi-Sen, SUNY-Buffalo
S. Banasick, Kent State
F. Calzonetti, Toledo
D. Edgington, British Columbia
A. Glasmeier, Penn State
J.W. Harrington, Washington
R. Hayter, Simon Fraser
D. Knudsen, Indiana
R. Larson, Indiana State
E. Malecki, Ohio State
K. Oshiro, Wright State
C. Pavlik, Iowa
B. Warf, Florida State
J. Wheeler, Georgia
Note

The IG will—*effective Spring 2004*—be affiliated with the International Geographical Union’s Commission of Economic Spaces. The IG was invited to participate by IGU Commissioners J.W. Harrington, R. LeHeron, & R. Hayter.
Guidelines for Contributors

Review Process
All manuscripts will be subject to double-blind peer review. Upon receipt of the manuscript, a paper will be sent out for review to three (3) professionals with expertise in the core area investigated. The three (3) reviewers will be comprised of at least one (1) editorial board member and one (1) non-board member. Ideally, the initial review process will be completed within six (6) to eight (8) weeks from initial submission. No initial review should exceed twelve (12) weeks. Please note July submissions will not be sent out for review until the first week of August.

Submissions
All submissions must represent the original work of the authors. It is the responsibility of the author to obtain copyright permission, if necessary. Simultaneous submissions of works to other journals are not acceptable. It is expected that work submitted to review are not under consideration elsewhere.

Electronic submissions are encouraged. MS Word (for Win3.1/95/98/00/ME) documents are the preferred submission format. Submissions in other MS Word (for Win3.1/95/98/00/ME) accessible formats are also accessible. Please do not embed tables, maps, or other figures. Tables, maps, and figures should be submitted separately as individual files.

Paper submissions should be made in triplicate to the appropriate section editor with any potential identifiers (acknowledgements, names, etc) placed on the first, or cover, page.

Articles
Articles should conform to the standard format found in the traditional academic journals. Alternative article formats should be presented to the co-editors before submission. Generally, articles should not exceed 5000 words (including abstract, text, and bibliography).

Submit articles to:
Neil Reid, Editor—Articles
The Industrial Geographer
Department of Geography & Planning
The University of Toledo
Toledo, OH 43606

Research Notes & Discussion
Notes that present short ‘data-driven’ case studies, examples of applied industrial geography, explore methodological issues, or concisely discuss or review the trajectory of industrial geography or related conceptual issues are encouraged. Additionally, ‘creative’ or non-conventional research notes are encouraged that may provide new insights into industrial geography and related social sciences or the humanities. Creative notes might include “wide format” posters or other unique formats that are more easily published in an electronic format. Research notes should not exceed 2500 words (including text and bibliography).

Submit research notes and discussion items to:
Jay D. Gatrell, Editor—Notes
The Industrial Geographer
Department of Geography, Geology, & Anthropology
Indiana State University
Terre Haute, IN 4780

Abstracts and Key Words
All articles must include a 150-200 word abstract that summarizes methods and key findings. Both articles and research notes should include a maximum of five (5) key words for the purposes of indexing. Ideally, the keywords would detail location, topic, method, and two (2) other related descriptors.

Headings & Tables
The format of headings and tables will be left to the discretion of authors. In the case of tables, it should be acknowledged that the portrait orientation is always preferred.

Illustrations
Color, grayscale, or black and white illustrations are acceptable. Authors should be mindful that all illustrations must be high quality and submitted in their final form as a TIF file with a 360 dpi resolution.

Citations & References
Parenthetical citations are used in the body of the text. Examples are presented below:

Single Author—(James 1934)
Multiple Authors—(Smith 1992; Billings 1989; Jones & Hanham 1995)
Direct Quote—(Billings 1989 p. 12)

References should be arranged alphabetically and chronologically. The general style for publication types is presented below:

1. Articles

2. Chapters

3. Presentations

4. Books

5. Working Papers or Other Resources
DeVol, R. 1999 America’s High-Tech Economy: Growth, Development, and Risks for Metropolitan Areas. Milken Institute, Santa Monica, CA.
Rickman, P. 2001 Official, United Auto Workers Local 12, Toledo, OH, telephone interview August 15.

Hypertext
Authors are encouraged to use hypertext (or WWW links) within their manuscript. However, authors are responsible for the overall validity of the link. To insure the shelf life of submitted manuscripts, links should be limited to ‘root’ directories—not individual web pages. Also, authors should seek to limit the use of hypertext to more stable internet sites, such as government agencies, non-governmental organizations, and or major corporations.